Silver Layer: Data Transformation & Quality
Published: November 2025 | 35 min read | Code on GitHub
Transforming Raw Data into Analysis-Ready Format
In this installment, we'll implement the Silver Layer transformations that clean, validate, and prepare our bronze data for analysis and machine learning.
Key Components
- Text Cleaning Pipeline
- HTML/Unicode normalization
- Medical abbreviation expansion
-
Clinical note section identification
-
PII Redaction
- Named entity recognition for PHI
- Secure redaction with audit trails
-
Pattern-based detection for medical IDs
-
Business Logic
- Specialty classification
- Symptom extraction
-
Temporal feature engineering
-
Data Quality
- Great Expectations validations
- Automated anomaly detection
- Data quality dashboards
Implementation Highlights
# Example: Text cleaning pipeline
def clean_clinical_text(text: str) -> str:
"""Clean and normalize clinical note text."""
# Remove HTML tags
text = re.sub(r'<[^>]+>', ' ', text)
# Expand common medical abbreviations
text = MEDICAL_ABBREVIATIONS.sub(
lambda m: MEDICAL_ABBREVIATION_MAP[m.group(0).lower()],
text,
flags=re.IGNORECASE
)
# Standardize whitespace and normalize unicode
text = ' '.join(text.split())
return unicodedata.normalize('NFKC', text)
Performance Optimization
-
Partitioning Strategy:
-
Z-Ordering:
Monitoring & Alerting
- Automated data quality checks
- Drift detection for text statistics
- Alerting on PII detection
← Part 3: Bronze Ingestion | Continue to Part 5: Gold Layer & Feature Store →